C070025



Naval Oceanographic and Atmospheric Research Laboratory Technical Note 82 December 1990

# **CEAREX/Haakon Mosby Meteorology Atlas**



P. A. Frederickson
P. S. Guest
K. L. Davidson
Department of Meteorology
Naval Postgraduate School
Monterey, CA 93943-5000

Prepared for
Forecast Guidance and Naval Systems Support Division
Atmospheric Directorate
Monterey, CA 93943-5006

91-01587

Approved for public release; distribution is unlimited. Naval Oceanographic and Atmospheric Research Laboratory, Stennis Space Center, Mississippi 39529-5004.

1. ... U. 3

SBIN NORDA

These working papers were prepared for the timely dissemination of information; this document does not represent the official position of NOARL.

#### ABSTRACT

The Coordinated Eastern Arctic Experiment (CEAREX) was conducted in the vicinity of the Svalbard Island group fromm September 1988 to May 1989. Personnel aboard the R/V Haakon Mosby participated in the Seasonal Ice Zone Experiment (SIZEX) phase of the project, taking continuous surface and upper air measurements during the period 25 Feb-23 Mar 1989. This report describes equipment and methods used in data acquisition and analysis, and summarizes observations by presenting data in three forms: (1) Time series plots of surface pressure, wind speed an direction, air temperature, dew point temperature, and relative humidity; (2) Vertical soundings of potential temperature, potential dew point temperature, specific numidity, and wind speed and direction; and (3) Daily sea level pressure analyses.

| }         | A0008              | ion Fo                            | r |  |
|-----------|--------------------|-----------------------------------|---|--|
| Edit Co.  | DTIC :             | GRA&I<br>TAB<br>ounced<br>ficatio |   |  |
|           | By                 |                                   |   |  |
| di (0, 0) | Availability Codes |                                   |   |  |
|           | P\/                | Avail (                           | - |  |

## **ACKNOWLEDGMENTS**

The authors would like to thank Roger Helvey, Pacific Missile Test Center, Pt. Mugu, CA, who contributed greatly in the collection of data contained in this report. We would also like to thank Johnny Johannessen of the Nansen Remote Sensing Center, Bergen, Norway, for his role in this research as chief scientist on board the R/V Haakon Mosby.

The Fleet Numerical Oceanography Center, Monterey, CA, provided the sea-level pressure analyses included in this report.

This work was supported by the Direct Research Funding Program at the Naval Postgraduate School and the Naval Oceanographic and Atmospheric Research Laboratory, Atmospheric Directorate, Monterey, CA, under Program Element 61153N.

Observations taken on other platforms during CEAREX are presented in the Naval Postgraduate School reports "CEAREX/ Polarbjoern Meteorology Atlas" by Lackmann et al. (NPS63-89-005), which includes an overview of the CEAREX project; and the "CEAREX/ "O" and "A" Camp Meteorology Atlas" by Guest and Davidson (NPS63-89-0(7).

## TABLE OF CONTENTS

| 1. | INTRO | ODUCTION                         | 1 |
|----|-------|----------------------------------|---|
| 2. | INST  | RUMENTATION AND DATA ACCURACY    | 1 |
|    | 2.1   | Surface Measurements             | 4 |
|    | 2.2   | Upper-Air Measurements           | 4 |
| 3. | DATA  | PLOTS                            | 5 |
|    | 3.1   | Time Series Plots (TS)           | 5 |
|    | 3.2   | Sea Level Pressure Analyses (PA) | 6 |
|    | 3.3   | Vertical Sounding Plots (VS)     | 6 |

## CEAREX/HAAKON MOSBY METEOROLOGY ATLAS

#### 1. INTRODUCTION

The Haakon Mosby's participation in the Seasonal Ice Zone Experiment (SIZEX), a component of the Coordinated Eastern Arctic Experiment (CEAREX), began on 25 February 1989, when the ship left Tromsoe, Norway, bound for regions in the Barents Sea. From 26 February to 7 March the ship operated in the general area between the northern coast of Norway and Spitzbergen (see Figure On 7 March the Haakon Mosby headed northwest toward regions in the Fram Strait west and southwest of Spitzbergen, where the ship cruised seaward of the pack ice edge from 11 to 19 March. The Haakon Mosby then headed southeast into the Barents Sea, finally returning to port on 23 March. During the period 0800 UTC 25 February to 1400 UTC 23 March, 1989, observations of basic surface meteorological parameters were taken every ten minutes. During 2 to 23 March vertical soundings of the atmosphere were made approximately every six hours, weather and equipment permitting, and more frequently during interesting weather conditions.

The instrumentation employed during CEAREX and the methods used during data acquisition and analysis are described in Section 2, and the estimated accuracy of the data is discussed. The data plots are explained in Section 3, and presented in three groups: time series (TS), sea level pressure analyses (PA), and vertical sounding plots (VS).

## 2. INSTRUMENTATION AND DATA ACCURACY

A list of the meteorological measurements made during CEAREX and the various sensors used on the different platforms is shown in Table 1. The instruments used on board the Haakon Mosby during CEAREX and the methods used in data analysis are described below. The accuracies referred to in the following sections are absolute and are based on manufacturer's claims, field experience, and knowledge of instrument location. In general, the sensitivity of the instruments was about one order of magnitude greater than the absolute accuracy. No great effort

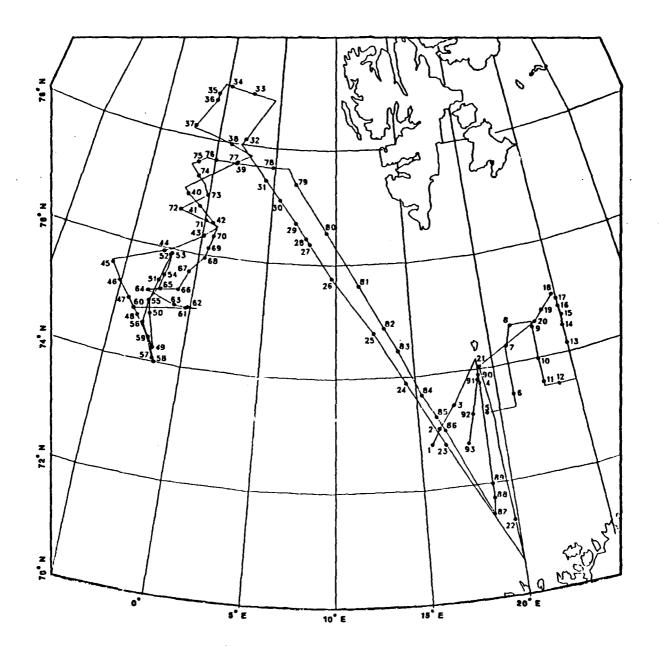



Figure 1. Track of R/V Haakon Mosby (solid line) and locations of rawinsonde flights (dot and flight number), 2-23 Mar 89. Flight times, dates, positions listed in Table 2.

Table 1. Meteorological measurements during CEAREX.

| Sensor                      | Parameter(s) Measured                                       | Platform<br>Codes* |
|-----------------------------|-------------------------------------------------------------|--------------------|
| Met Station                 | Vector wind, temperature, humidity, wind gust, air pressure | 1-8                |
| Pyranometer                 | Downward Solar Radiation                                    | 1-6,8              |
| Radiometer                  | Downward Infrared Radiation                                 | 1-8                |
| Hotfilm                     | Turbulent Wind, Wind Stress                                 | 1-6,8              |
| Miniature Cup<br>Anemometer | Turbulent Wind, Wind Stress                                 | 5                  |
| Doppler<br>Acoustic Sounder | Inversion Height, Boundary<br>Layer Structure, Wind Profile | 1                  |
| 35 mm Camera                | Sky and Surface Conditions                                  | 1-8                |
| Human Observation           | Sky and Surface Conditions,<br>Visibility, Precipitation    | 1-8                |
| All Sky Imager              | Aurora, Sky Conditions                                      | 1-4,8              |
| Rawinsonde                  | Vector Wind Temperature and<br>Humidity Profile             | 1-5,7,8            |
| Profile Mast                | Wind Speed, Wind Stress, Heat<br>Flux                       | 1,6                |
| Sonic Anemometer            | Wind Stress (direct)<br>Heat Flux (direct)                  | 7                  |

| Code | Platform     | CEAREX Phase      |    |      | Da | <b>ite</b> | В    |    |
|------|--------------|-------------------|----|------|----|------------|------|----|
| 1    | Polarbjoern  | Drift             | 4  | Sep. | _  | 17         | Nov. | 88 |
| 2    | Polarbjoern  | Drift (break out) | 17 | Nov. | _  | 10         | Jan. | 89 |
| 3    | Polarbjoern  | Whaler's Bay      | 17 | Jan. | _  | 4          | Feb. | 89 |
| 4    | Polarbjoern  | SIZEX             | 9  | Feb. |    | 4          | Apr. | 89 |
| 5    | Haakon Mosby | SIZEX             | 25 | Feb. | _  | 23         | Mar. | 89 |
| 6    | Ice camp     | "A"coustics       | 30 | Mar. | _  | 19         | Apr. | 89 |
| 7    | Ice camp     | "O"ceanography    | 27 | Mar. | _  | 24         | Apr. | 89 |
| 8    | Polarbjoern  | Biology           |    |      |    |            | May. |    |

has been made to check the data for errors, but obviously erroneous data detected by visual inspection of data plots have been removed.

#### 2.1 Surface Measurements

A Coastal Climate WeatherPak meteorological station was used on board the Haakon Mosby to measure air temperature, relative humidity, atmospheric pressure and wind speed and direction. This station was mounted on a platform extending forward of the Haakon Mospy's bow mast at a height of 15 meters above sea level. All observations were averaged over 10 minute intervals. temperature outa obtained from this instrument are accurate to within 1.0 C and the relative humidity data to within 5%. accuracy of the wind measurements depended upon the wind direction relative to the ship, since a "sheltering" effect was observed with winds blowing directly from the stern. Wind speeds are accurate to within 0.3 m/s and direction to within 10 degrees, although when winds were from the stern the errors are likely to be larger. All wind data have been corrected for ship motion based on ship speed and heading. The measurements of atmospheric pressure are accurate to within 2 millibars.

## 2.2 Upper-Air Measurements

Vertical soundings of the atmosphere were routinely obtained about every six hours, with rawinsonde flights at approximately 0000, 0600, 1200 and 1800 UTC every day, depending upon equipment or environmental conditions. During periods of unusual or exceptional weather conditions soundings were made more frequently. The number of soundings made in a single day varied from none to as many as nine.

The vertical profiles of temperature, dew point temperature and wind speed and direction were measured using rawinsondes manufactured by the Vaisala Corporation and software developed by Roger Helvey. The temperature data obtained from these rawinsondes have an accuracy of 0.2 C and the dewpoint temperatures are accurate to within 1.5 C. Wind data were obtained using an

omega navigation tracking system on each sonde. The vector wind speeds are considered to be accurate to within 1 m/s. Winds in the lower 500 meters of the rawinsonde flights were interpolated from surface and upper-level measurements, and therefore are likely to have larger errors. The heights are accurate to within 30 meters.

#### 3 DATA PLOTS

Figures are arranged in three groups: time series of basic surface meteorological parameters for the entire deployment of the Haakon Mosby from 25 February to 23 March, overall and by week; vertical profiles of basic meteorological parameters from rawinsonde flights; and daily analyses of sea level pressure for the general CEAREX region. All plots are arranged in chronological order.

## 3.1 Time Series Plots (TS)

The time series plots are based on observations averaged over 10 minute intervals, and gaps in the time series are shown only when data were missing for more than one hour. Figure TS-1 shows data for the deployment overall, while Figures TS-2 through -5 show the data week by week.

The first (top) graph in each figure shows the time series of true wind direction measured from true north (0 degrees). Some wind direction values between 0 and 45 degrees were plotted as being in the corresponding 360 to 405 degree range (for example, a wind direction of 15 degrees might be plotted as being 375 degrees). This was done to avoid the "windshield wiper" effect, which is caused when winds fluctuate about 360 degrees and the resulting plot exhibits repeated streaks across the graph.

The second graph shows the time series of relative humidity in percent.

The third graph shows the time series of air temperature (solid line) and dew point temperature (dashed line) in degrees Celsius.

The fourth graph hows the time series of wind speed in meters per second at the bottom, and wind barbs depicting wind direction at the top. A barb pointing to the top of the page indicates a northerly (0 degrees) wind. In order to be distinguishable, the wind direction barbs were plotted only for every 30 minutes.

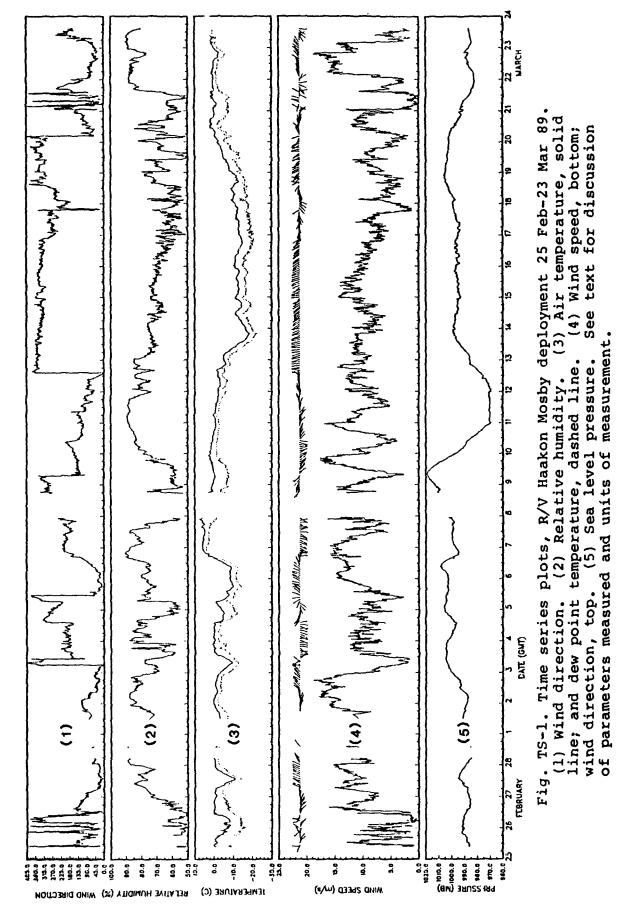
The fifth (bottom) graph shows the time series of sea level pressure in millibars.

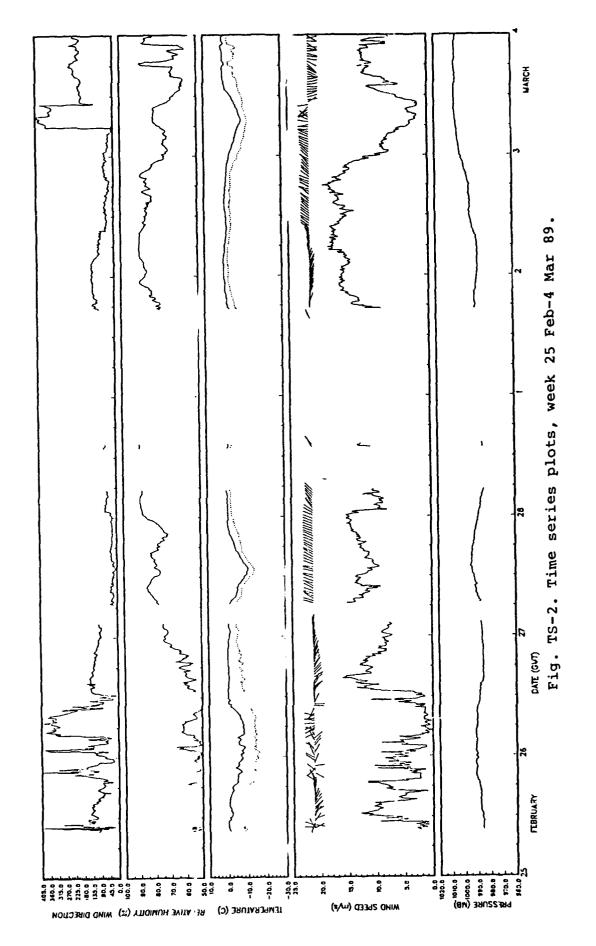
#### 3.2 Sea Level Pressure Analyses (PA)

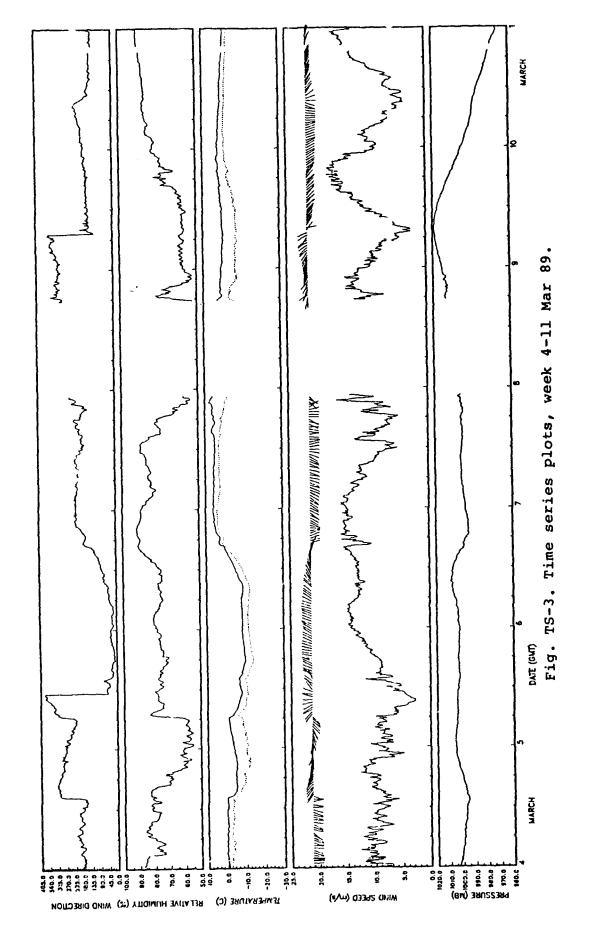
Daily analyses of sea level pressure are presented, usually for 1200 UTC, otherwise for 0000 UTC. These analyses are based on North Atlantic sea level pressure analyses developed by the Fleet Numerical Oceanography Center, Monterey, CA. The locations of fronts are not shown in these analyses, which in some cases were subjectively redrawn during tracing. Isobars are drawn at 4 millibar intervals and are labelled at 8 millibar intervals with the last two whole digits of the pressure value (e.g. "24" equals 1024 millipars). The analyses for 6 and 7 Narch were not available for this report.

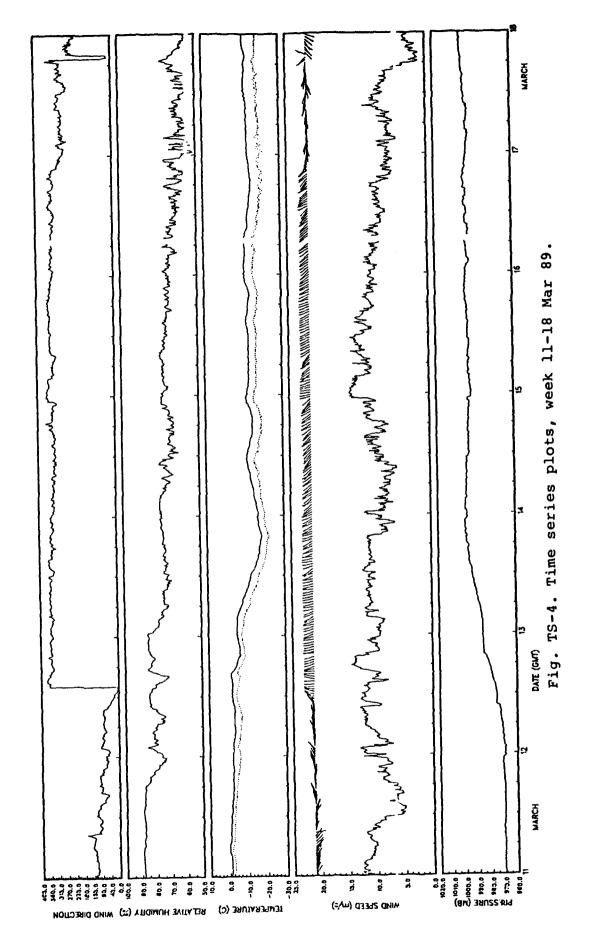
## 3.3 Vertical Sounding Plots (VS)

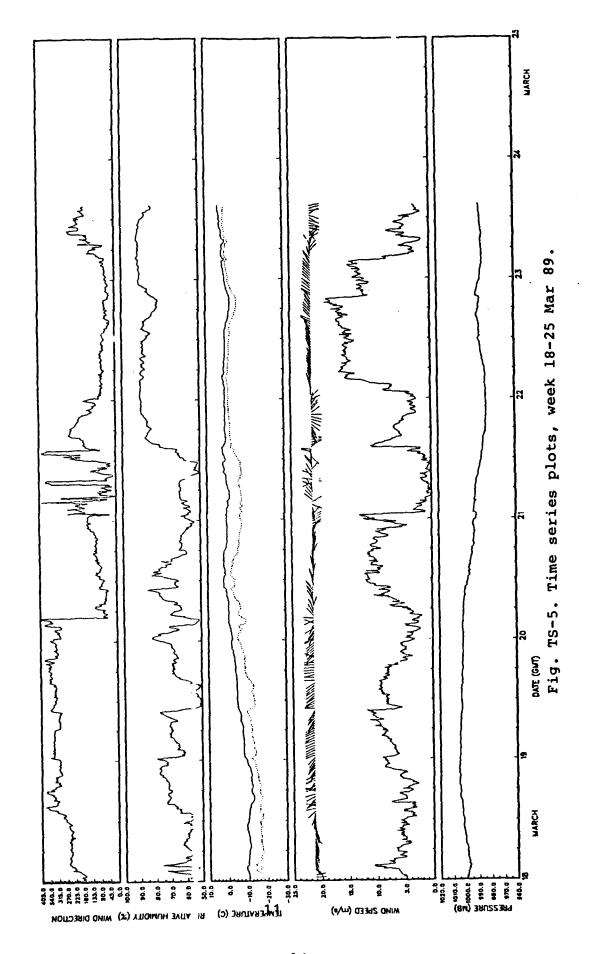
The left portions of the sounding plots show the vertical profiles of potential temperature (thick solid line) and potential dew point temperature (dashed line), which are both scaled at the bottom of the plot. The potential dew point temperature is defined as the potential temperature minus the dew point depression. The vertical profile of specific humidity is shown by the thin solid line and is scaled at the top of the plot. The right portions of the sounding plots display the true wind speed and direction, using the same vertical scale as the left port ons of the plots. The true wind direction is shown by wind barbs; a barb pointing toward the top of the page indicates a northerly (0 degrees) wind. The soundings are plotted only up to 10000 meters above sea level, although data were sometimes obtained at higher levels. The time and position of rawinsonde

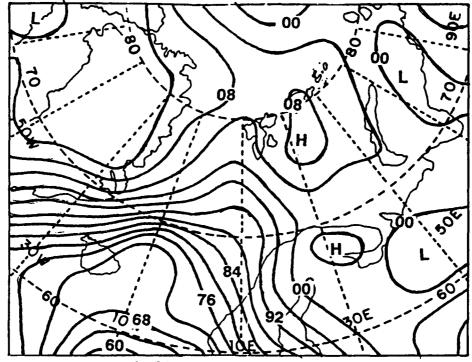

deployment are indicated below each plot -- launch positions were shown in Figure 1 -- and corresponding launch times are listed in Table 2.


Table 2. Times and locations of CEAREX/Haakon Mosby rawinsonde flights.

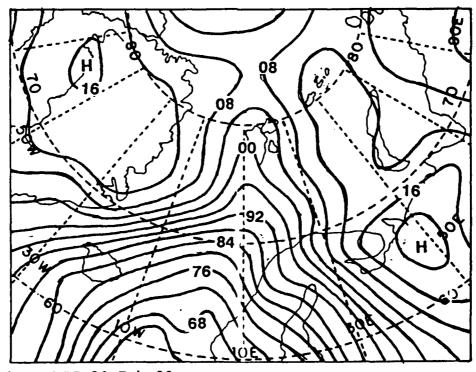

| Flight No.  | Time         | Date     | Position             |
|-------------|--------------|----------|----------------------|
| 1           | 1258         | 2 March  | 72° 47′ N, 15° 43′ E |
| 2           | 1850         | 2 March  | 73° 03' N, 16° 15' E |
| 3           | 0000         | 3 March  | 73° 26' N, 17° 16' E |
| 4           | 1207         | 3 March  | 73° 46' N, 19° 00' E |
| 5           | 1635         | 3 March  | 73° 13′ N, 19° 13′ E |
| 6           | 2250         | 3 March  | 73° 28' N, 21° 00' E |
| 7           | 0726         | 4 March  | 74° 19' N, 21° 04' E |
| 8           | 1016         | 4 March  | 74° 40' N, 21° 34' E |
| 9           | 1402         | 4 March  | 74° 34′ N, 23° 00′ E |
| 10          | 1820         | 4 March  | 74° 00' N, 22° 58' E |
| 11          | 2140         | 4 March  | 73° 35' N, 23° 00' E |
| 12          | 0000         | 5 March  | 73° 30' N, 23° 54' E |
| 13          | 0731         | 5 March  | 74° 09' N, 25° 00' E |
| 14          | 1005         | 5 March  | 74° 28' N, 24° 59' E |
| 15          | 115"         | 5 March  | 74° 40' N, 25° 06' E |
| 16          | 1558         | 5 March  | 74° 49' N, 25° 00' E |
| 17          | 1645         | 5 March  | 74° 57′ N, 24° 59′ E |
| 18          | 1856         | 5 March  | 75° 03' N, 24° 46' E |
| 19          | 2059         | 5 March  | 74° 49′ N, 23° 51′ E |
| 20          | 2252         | 5 March  | 74° 38′ N, 23° 15′ E |
| 21          | 0959         | 6 March  | 74° 05' N, 19° 08' E |
| 22          | 122€         | 7 March  | 71° 19′ N, 19° 51′ E |
| 23          | 113          | 9 March  | 72° 46′ N, 16° 31′ E |
| 24          | 1811         | 9 March  | 73° 53′ N, 14° 23′ E |
| 25          | <b>232</b> 3 | 9 March  | 74° 48′ N, 12° 30′ E |
| ∦ 26        | 0633         | 10 March | 75° 45' N, 9° 39' E  |
| <b>∥</b> 27 | 1010         | 10 March | 76° 21' N, 8° 01' E  |
| <b>∥</b> 28 | 1112         | 10 March | 76° 21' N, 7° 44' E  |
| 29          | 1314         | 10 March | 76° 43′ N, 6° 53′ E  |
| 30          | 1534         | 10 March | 77° 06' N, 5° 36' E  |
| ∦ 31        | 1745         | 10 March | 77° 25′ N, 4° 20′ E  |
| 32          | 2306         | 10 March | 78° 06' N, 2° 18' E  |
| 33          | 1213         | 11 March | 78° 54′ N, 2° 31′ E  |
| 34          | 1527         | 11 March | 78° 58' N, 0° 23' E  |
| 35          | 1755         | 11 March | 78° 49′ N, 0° 36′ W  |
| 36          | 1845         | 11 March | 78° 41′ N, 0° 41′ W  |
| 37          | 2302         | 11 March | 78° 11′ N, 2° 06′ W  |
| 38          | 0645         | 12 March | 77° 58′ N, 1° 10′ E  |
| 39          | 1219         | 12 March | 77° 41′ N, 1° 51′ E  |
| 40          | 2114         | 12 March | 77° 00′ N, 1° 36′ W  |
| 41          | 2345         | 12 March | 76° 49′ N, 0° 34′ W  |
| 42          | 0251         | 13 March | 76° 34′ N, 0° 37′ E  |
| 43          | 0616         | 13 March | 76° 19′ N, 0° 07′ E  |
| 44          | 1317         | 13 March | 75° 56′ N, 2° 29′ W  |
| 45          | 2026         | 13 March | 75° 33′ N, 5° 51′ W  |
| 46          | 0056         | 14 March | 75° 16′ N, 5° 06′ W  |
| 47          | 0348         | 14 March | 75° 01′ N, 4° 12′ W  |
| <b>}</b>    |              |          |                      |


Table 2 continued.


| Flight No. | Time | Date     | Positions                   |
|------------|------|----------|-----------------------------|
| 48         | 0621 | 14 March | 74° 45′ N, 3° 23′ W         |
| 49         | 1217 | 14 March | 74° 15′ N, 1° 58′ W         |
| 50         | 1715 | 14 March | 74° 49′ N, 2° 36′ W         |
| 51         | 2329 | 14 March | 75° 25′ N, 2° 28′ W         |
| 52         | 0347 | 15 March | 75° 53′ N, 2° 00′ W         |
| 53         | 0622 | 15 March | 75° 55′ N, 1° 54′54         |
| 54         | 1209 | 15 March | 75° 31′ N, 2° 10′ W         |
| 55         | 1749 | 15 March | 75° 03′ N, 2° 50′ W         |
| 56         | 2153 | 15 March | 74° 39′ N, 2° 56′ W         |
| 57         | 0303 | 16 March | 74° 04′ N, 1° 52′ W         |
| 58         | 0617 | 16 March | 74° 00′ N, 1° 43′ W         |
| 59         | 1120 | 16 March | 74° 25′ N, 2° 23′ W         |
| 60         | 1748 | 16 March | 74° 52′ N, 3° 45′ W         |
| 61         | 2324 | 16 March | 75° 01' N, 0° 18' W         |
| 62         | 0534 | 17 March | 75° 03′ N, 0° 10′ W         |
| 63         | 0627 | 17 March | 75° 03′ N, 1° 04′ W         |
| 64         | 1035 | 17 March | 75° 13′ N, 3° 03′ W         |
| 65         | 1143 | 17 March | 75° 16′ N, 2° 12′ W         |
| 66         | 1340 | 17 March | 75° 19′ N, 1° 01′ W         |
| 67         | 1743 | 17 March | 75° 40′ N, 0° 30′ W         |
| 68         | 2058 | 17 March | 75° 56' N, 0° 26' E         |
| 69         | 2234 | 17 March | 76° 07′ N, 0° 36′ E         |
| 70         | 0001 | 18 March | 76° 21' N, 0° 51' E         |
| 71         | 0302 | 18 March | 76° 36′ N, 0° 06′ E         |
| 72         | 0722 | 18 March | 76° 43′ N, 1° 58′ W         |
| 73         | 1126 | 18 March | 77° 02′ N, 0° 04′ W         |
| 74         | 1502 | 18 March | 77° 21' N, 1° 04' W         |
| 75         | 1758 | 18 March | 77° 35′ N, 1° 19′ W         |
| 76         | 2034 | 18 March | 77° 40' N, 0° 04' E         |
| 77         | 2338 | 18 March | 77° 40' N, 1° 48' E         |
| 78         | 0443 | 19 March | 77° 39' N, 4° 48' E         |
| 79         | 0833 | 19 March | 77° 23' N, 6° <b>47</b> ' E |
| 80         | 1347 | 19 March | 76° 33′ N, 9° 17′ E         |
| 81         | 1848 | 19 March | 75° 37′ N, 11° 34′ E        |
| 82         | 2301 | 19 March | 74° 52′ N, 13° 11′ E        |
| 83         | 0128 | 20 March | 74° 28' N, 14° 03' E        |
| 84         | 0506 | 20 March | 73° 40′ N, 15° 19′ E        |
| 85         | 0801 | 20 March | 73° 16′ N, 16° 07′ E        |
| 86         | 0917 | 20 March | 73° 01′ N, 16° 34′ E        |
| 87         | 1746 | 20 March | 71° 28′ N, 18° 47′ E        |
| 88         | 2316 | 21 March | 71° 45′ N, 18° 55′ E        |
| 89         | 0252 | 22 March | 72° 00′ N, 18° 55′ E        |
| 90         | 1751 | 22 March | 73° 54′ N, 19° 00′ E        |
| 91         | 2118 | 22 March | 73° 49′ N, 18° 53′ E        |
| 92         | 0018 | 23 March | 73° 15′ N, 18° 22′ E        |
| 93         | 0305 | 23 March | 72° 45' N, 17° 53' E        |
|            |      |          |                             |

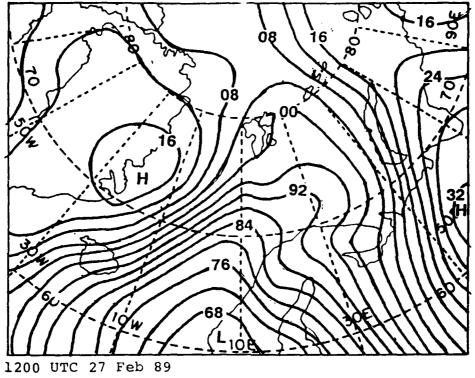









1200 UTC 25 Feb 89



1200 UTC 26 Feb 89

Fig. PA-1. Sea level pressure analyses for 25,26 Feb 89, R/V Haakon Mosby deployment. See text for discussion of plots.



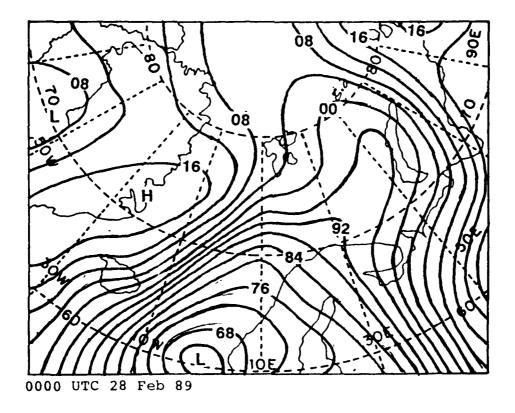
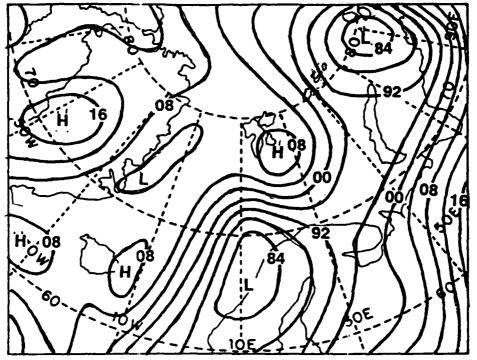




Fig. PA-2. Sea level pressure analyses for 27,28 Feb 89.



1200 UTC 1 Mar 89

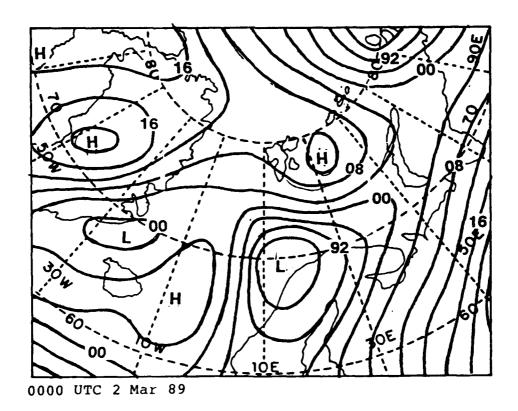
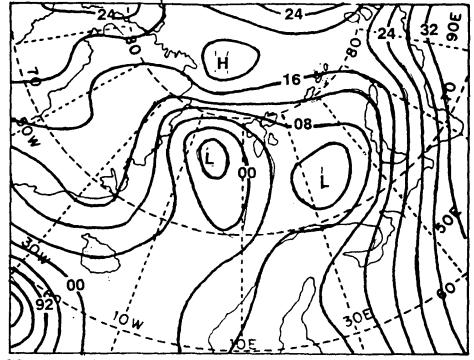




Fig. PA-3. Sea level pressure analyses for 1,2 Mar 89.



1200 UTC 3 Mar 89

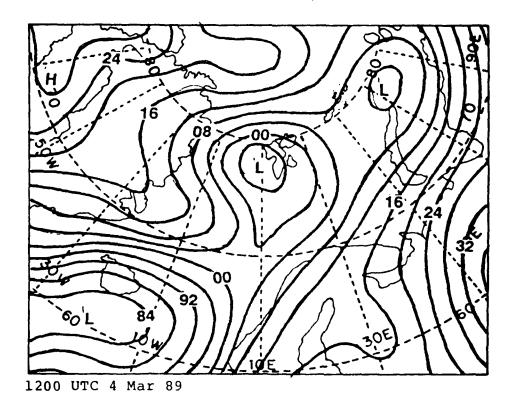
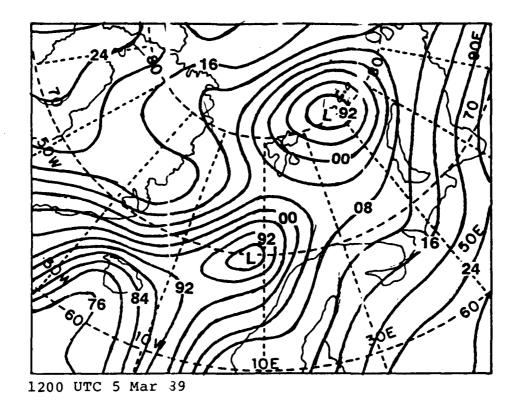
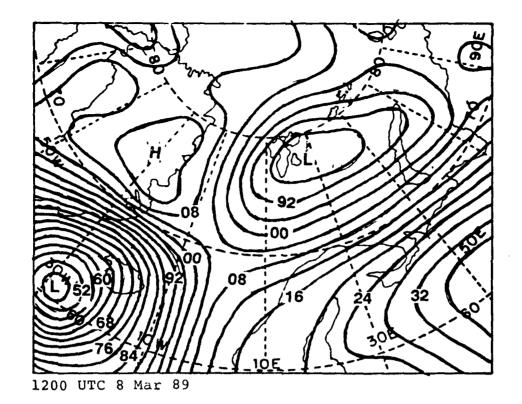
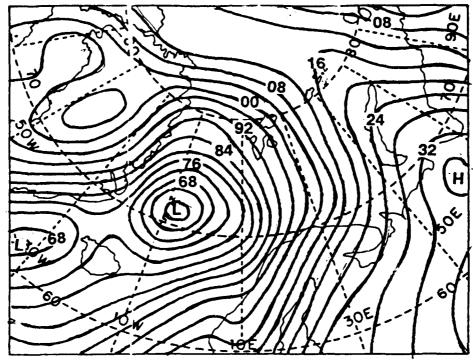



Fig. PA-4. Sea level pressure analyses for 3,4 Mar 89.



Fig. PA-5. Sea level pressure analysis for 5 Mar 89.

(Analyses for 6,7 Mar 89 not available.)



16 92 00 08 00 92 00 08 12 00 08 12 00 00 10 12 00 00 10 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12 00 12

Fig. PA-6. Sea level pressure analyses for 8,9 Mar 89.



1200 UTC 10 Mar 89

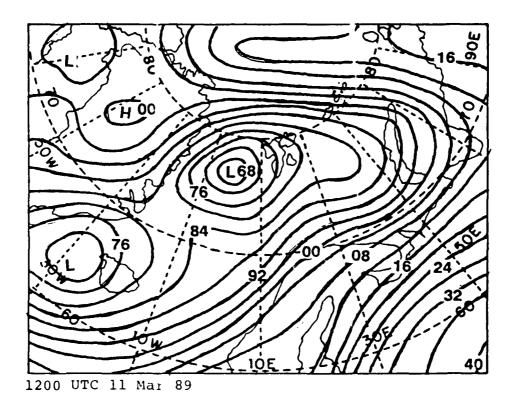
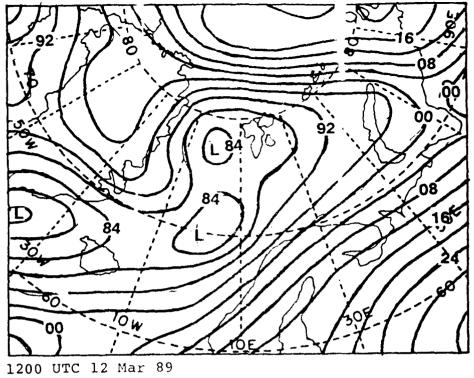




Fig. PA-7. Sea level pressure analyses for 10,11 Mar 89.



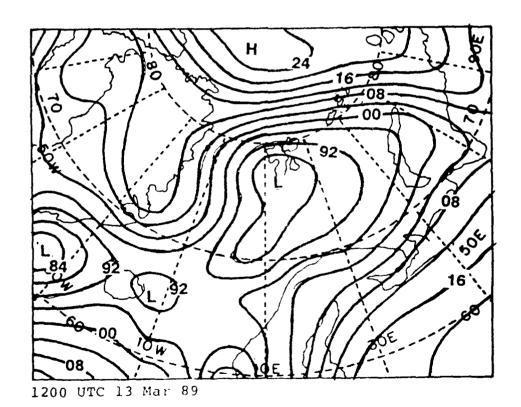
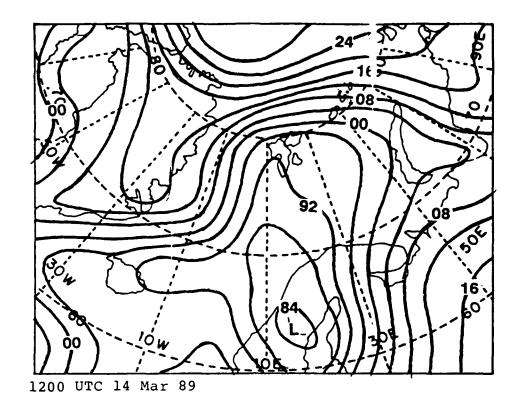




Fig. PA-8. Sea level pressure analyses for 12,13 Mar 89.



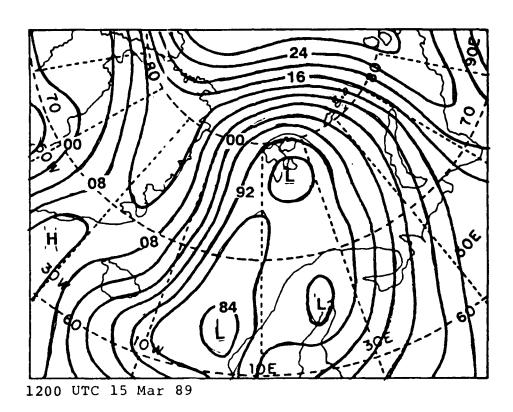
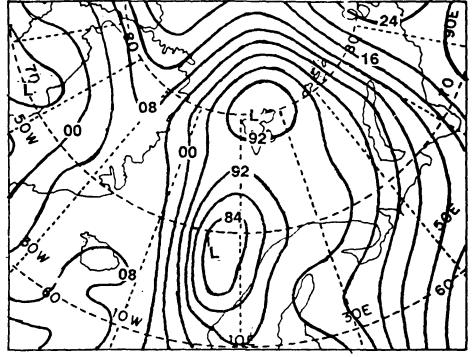




Fig. PA-9. Sea level pressure analyses for 14,15 Mar 89.



1200 UTC 16 Mar 89

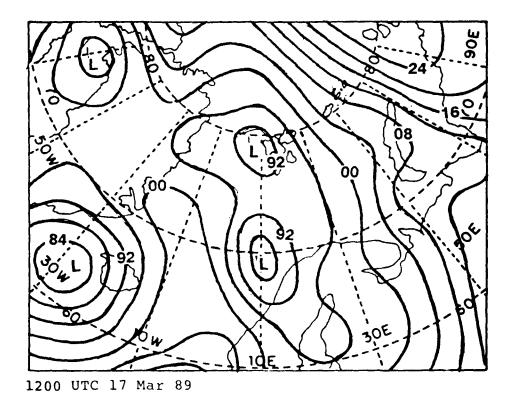
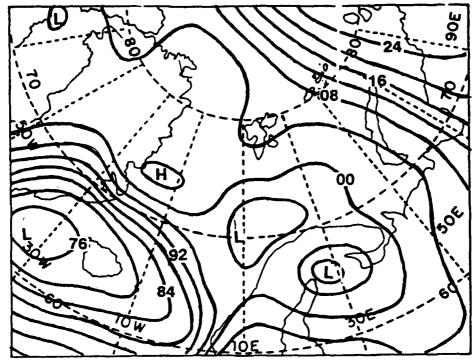




Fig. PA-10. Sea level pressure analyses for 16,17 Mar 89.



1200 UTC 18 Mar 89

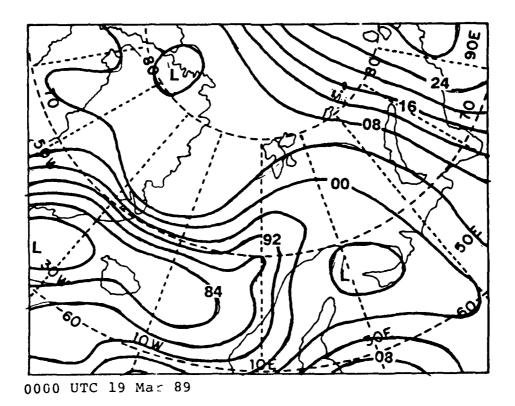
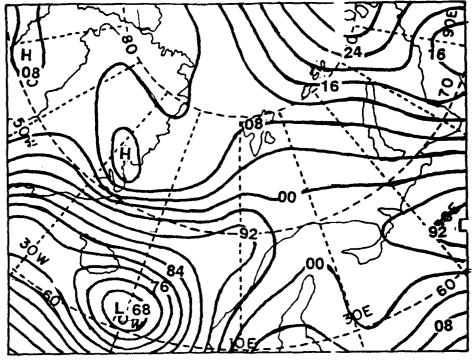




Fig. PA-11. Sea level pressure analyses for 18,19 Mar 89.



0000 UTC 20 Mar 89

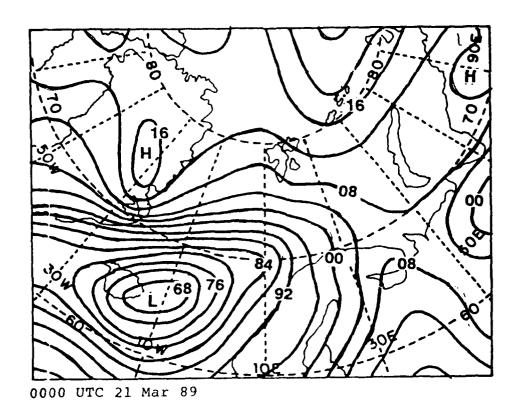
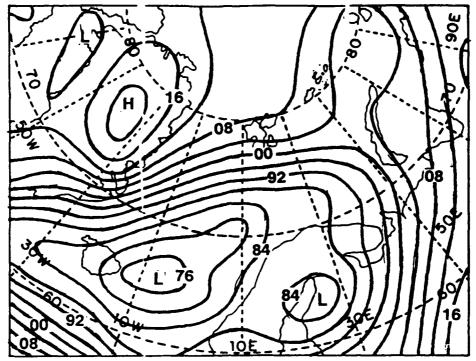




Fig. PA-12. Sea level pressure analyses for 20,21 Mar 89.



1200 UTC 22 Mar 89

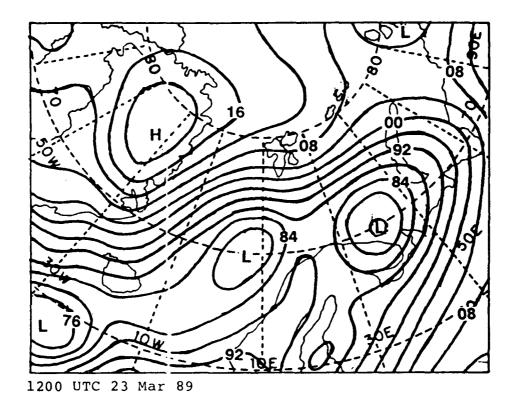



Fig. PA-13. Sea level pressure analyses for 22,23 Mar 89.

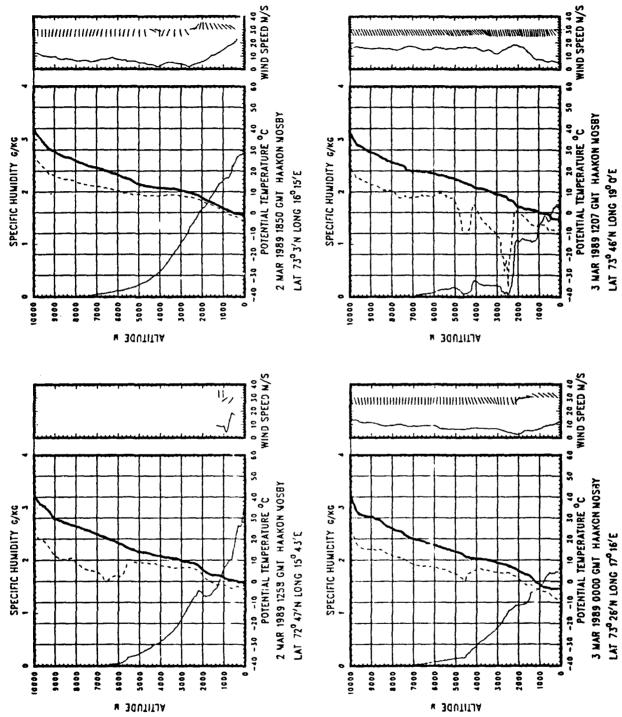
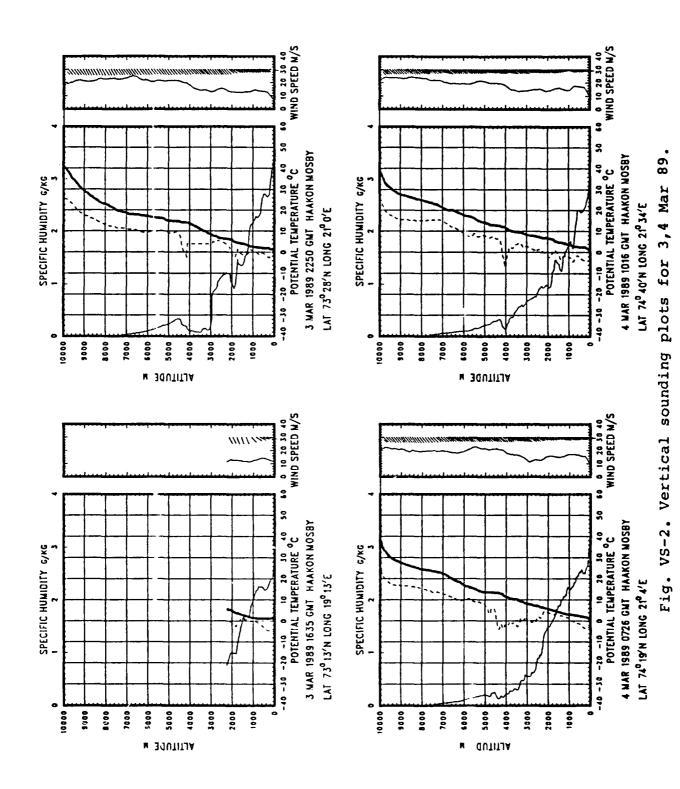




Fig. VS-1. Vertical sounding plots for 2,3 Mar 89, R/V Haakon Mosby deployment. See text for discussion of line codes and scales. deployment.



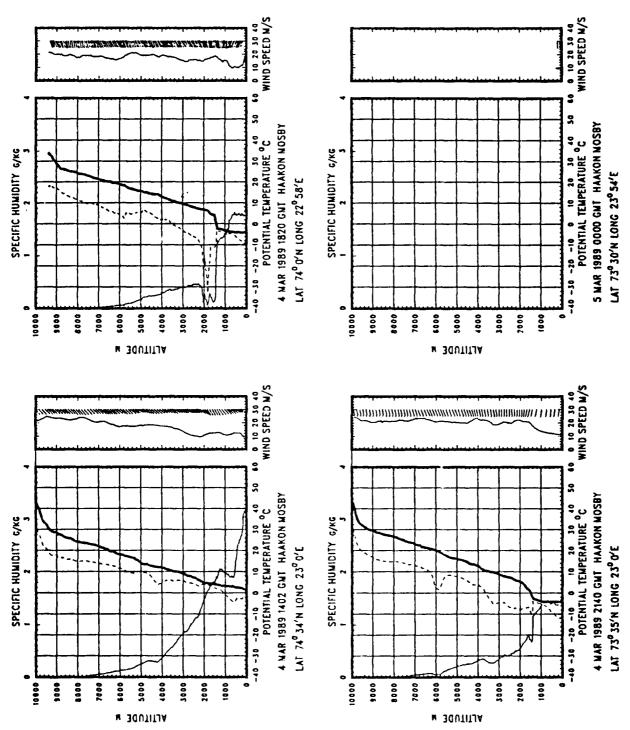



Fig. VS-3. Vertical sounding plots for 4,5 Mar 89.

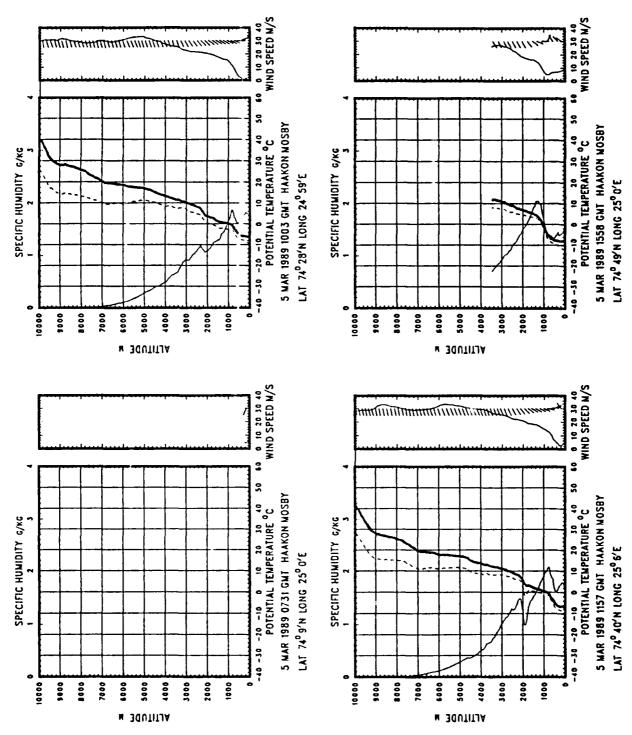



Fig. VS-4. Vertical sounding plots for 5 Mar 89.

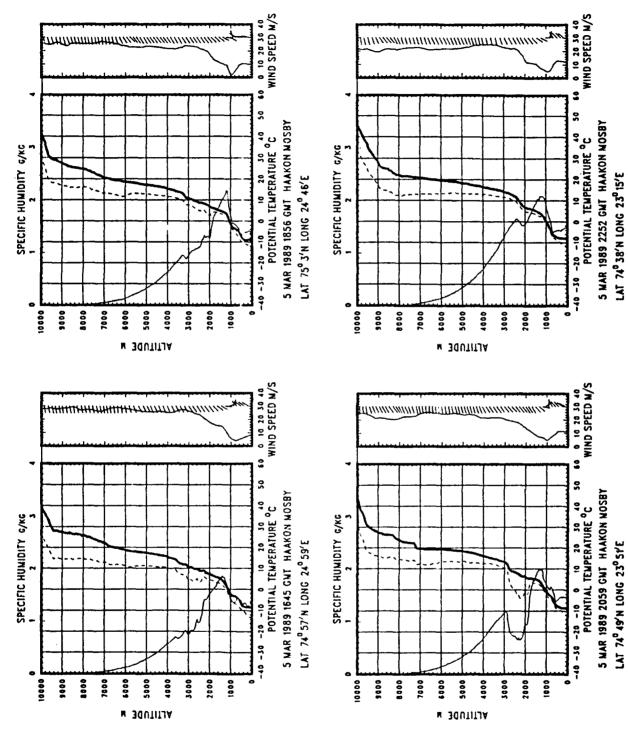



Fig. VS-5. Vertical sounding plots for 5 Mar 89.

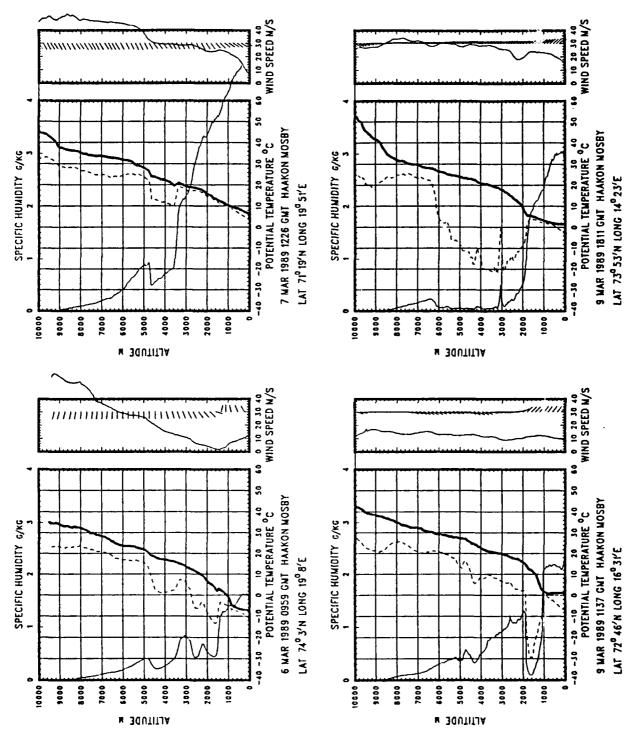



Fig. VS-6. Vertical sounding plots for 6,7,9 Mar 89,

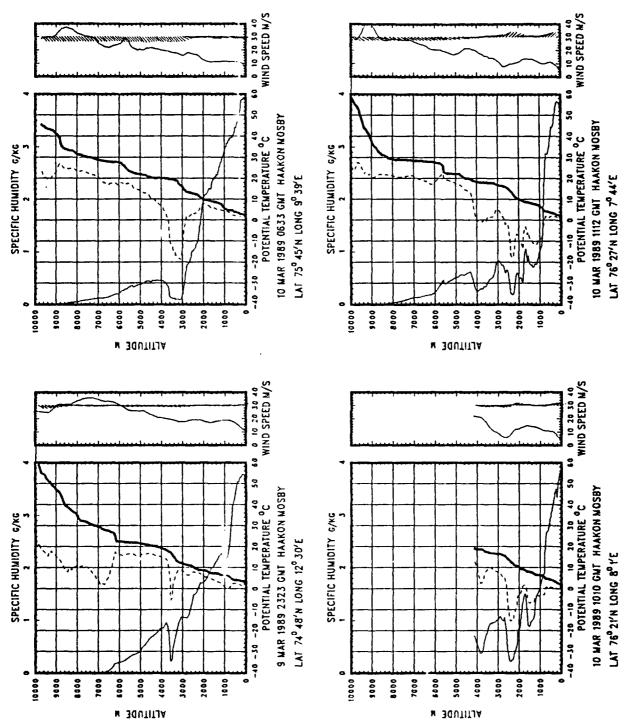



Fig. VS-7. Vertical sounding plots for 9,10 Mar 89.

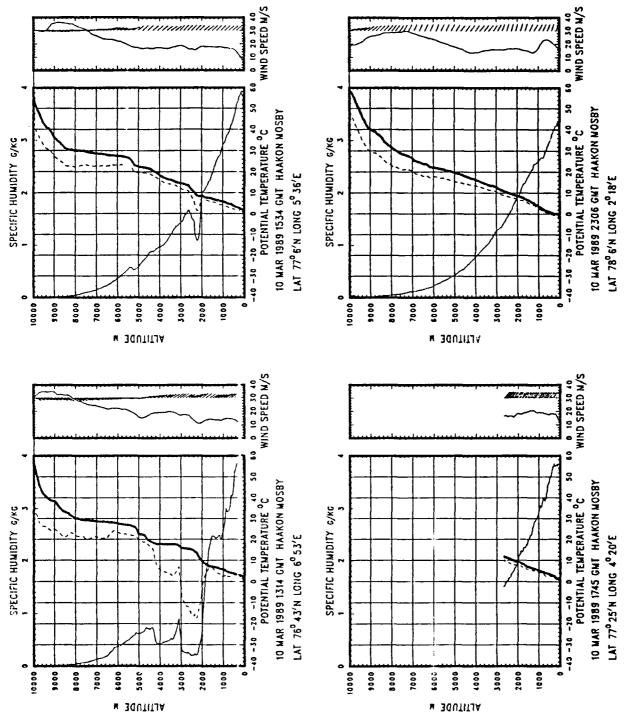



Fig. VS-8. Vertical sounding plots for 10 Mar 89.



Fig. VS-9. Vertical sounding plots for 11 Mar 89.

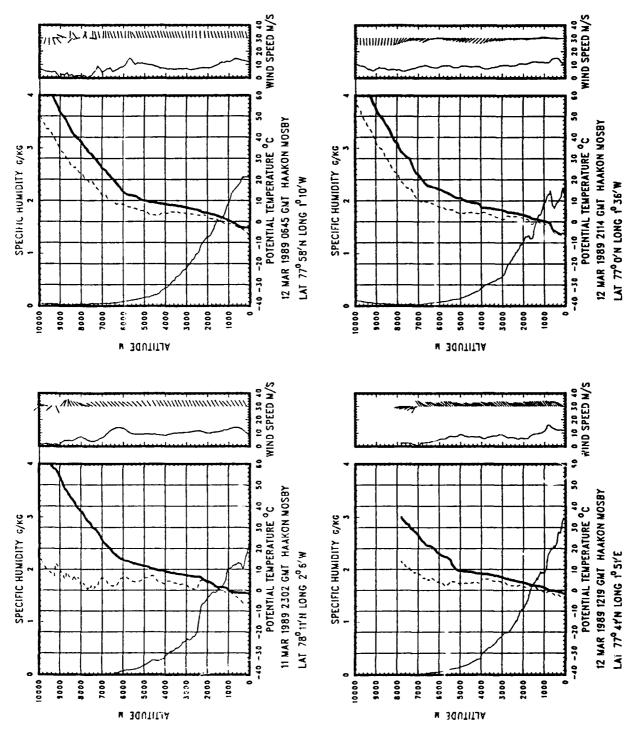



Fig. VS-10. Vertical sounding plots for 11,12 Mar 89.

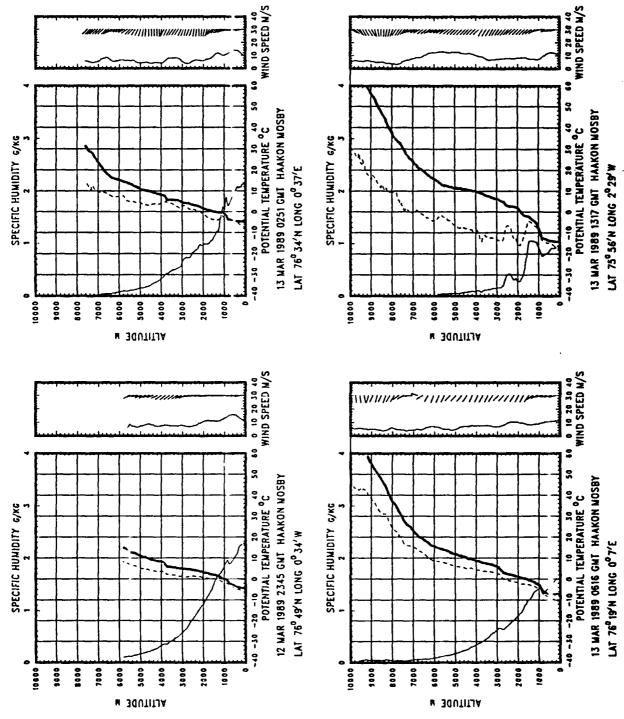



Fig. VS-11. Vertical sounding plots for 12,13 Mar 89.

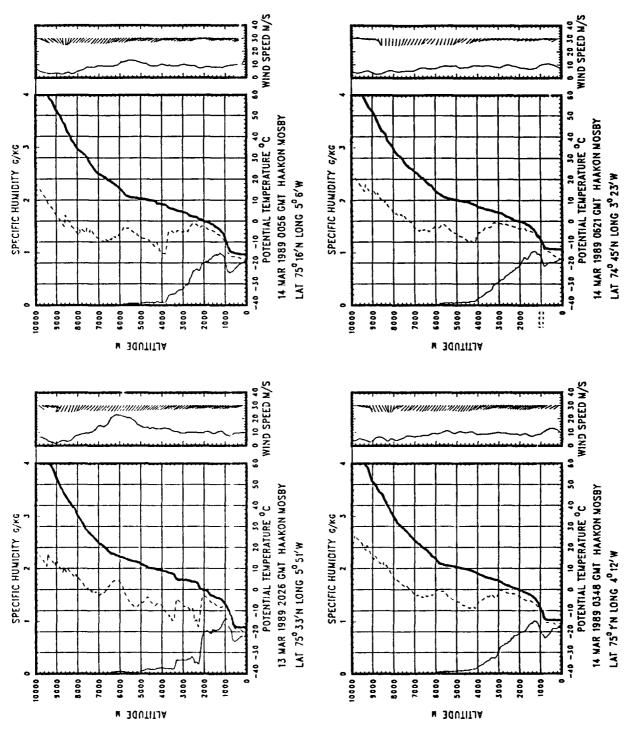
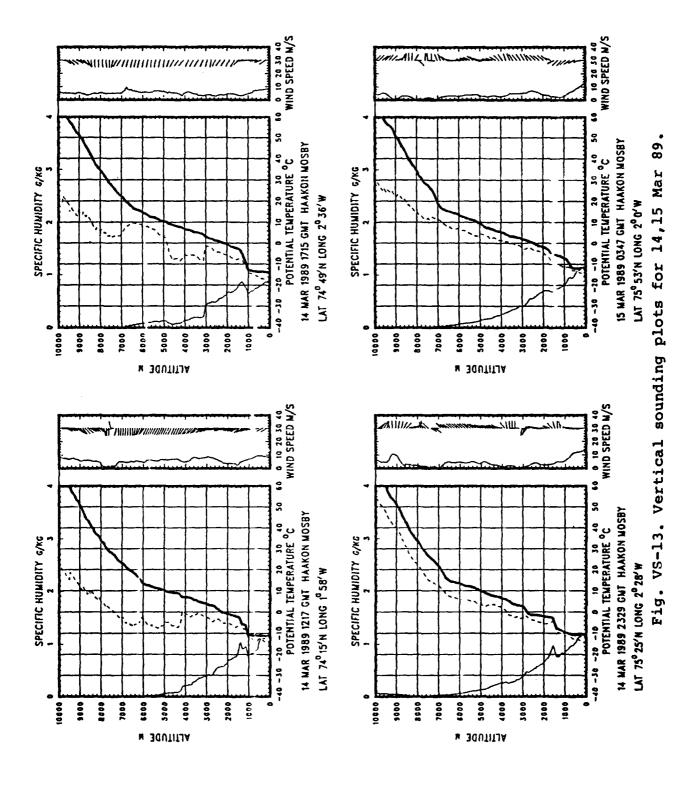




Fig. VS-12. Vertical sounding plots for 13,14 Mar 89.



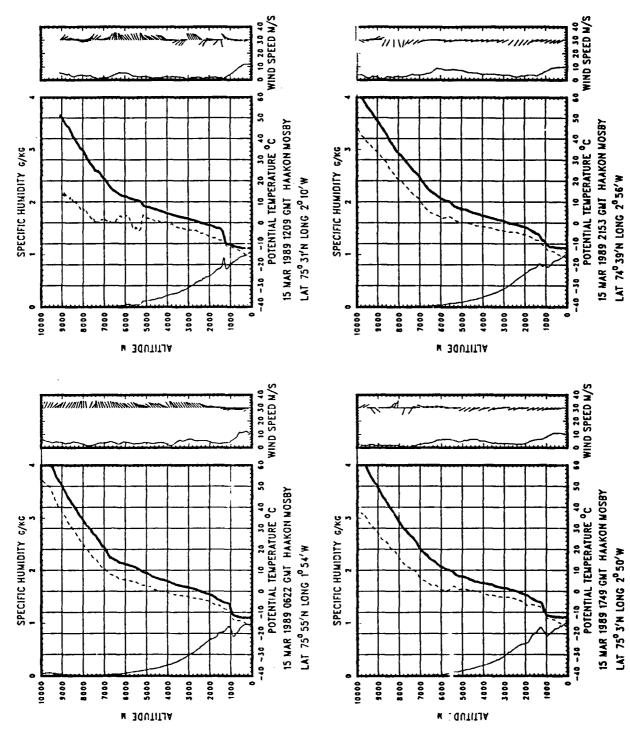



Fig. VS-14. Vertical sounding plots for 15 Mar 89.

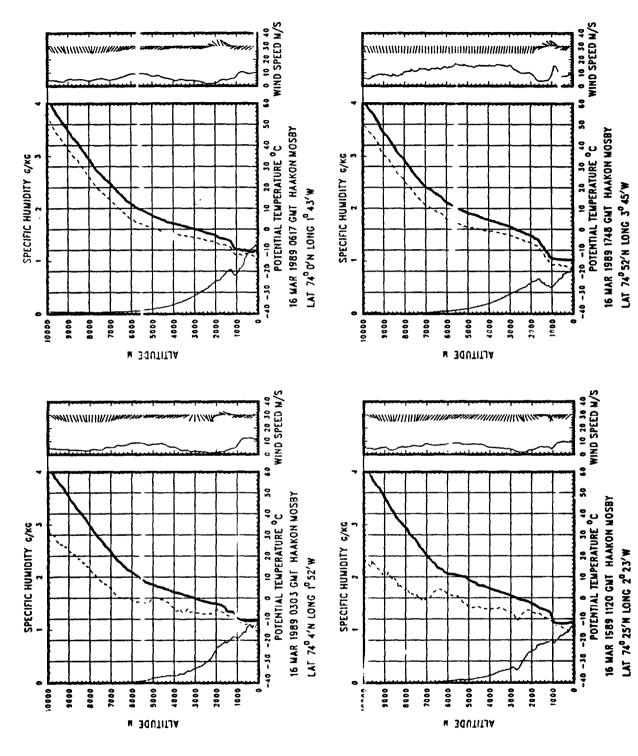



Fig. VS-15. Vertical sounding plots for 16 Mar 89.

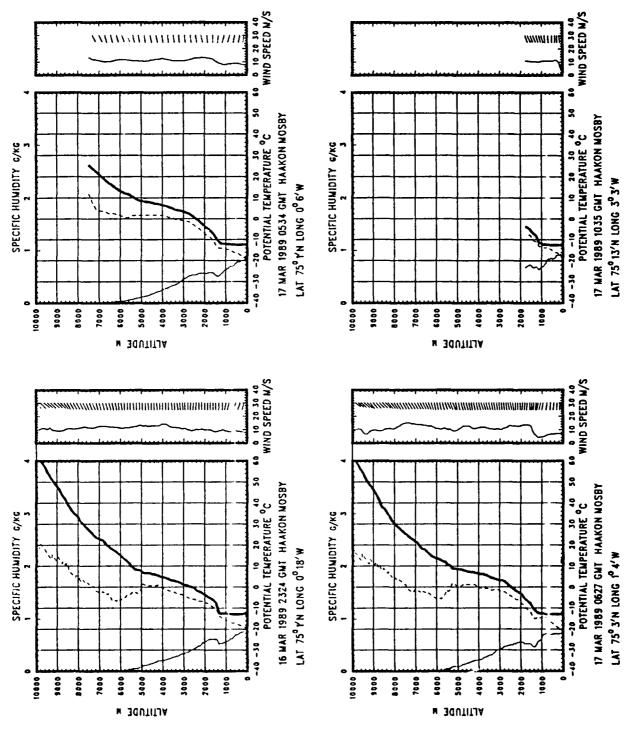



Fig. VS-16. Vertical sounding plots for 16,17 Mar 89.

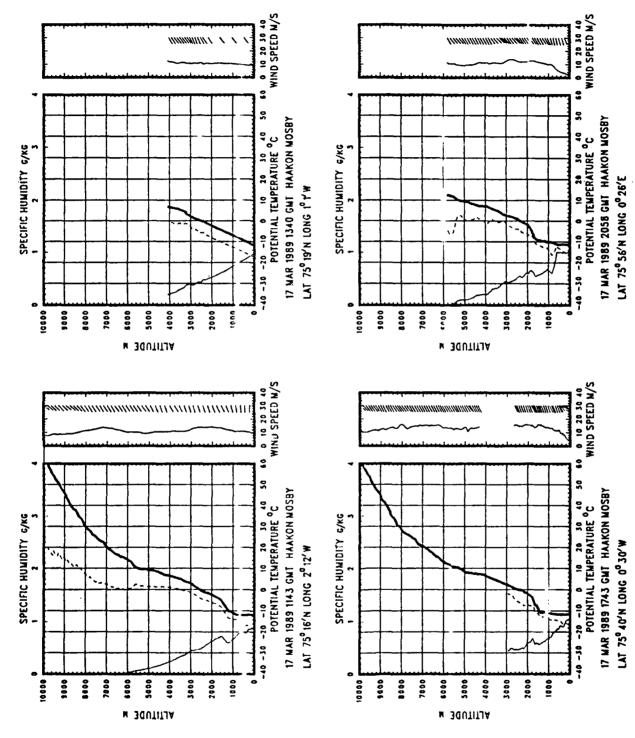
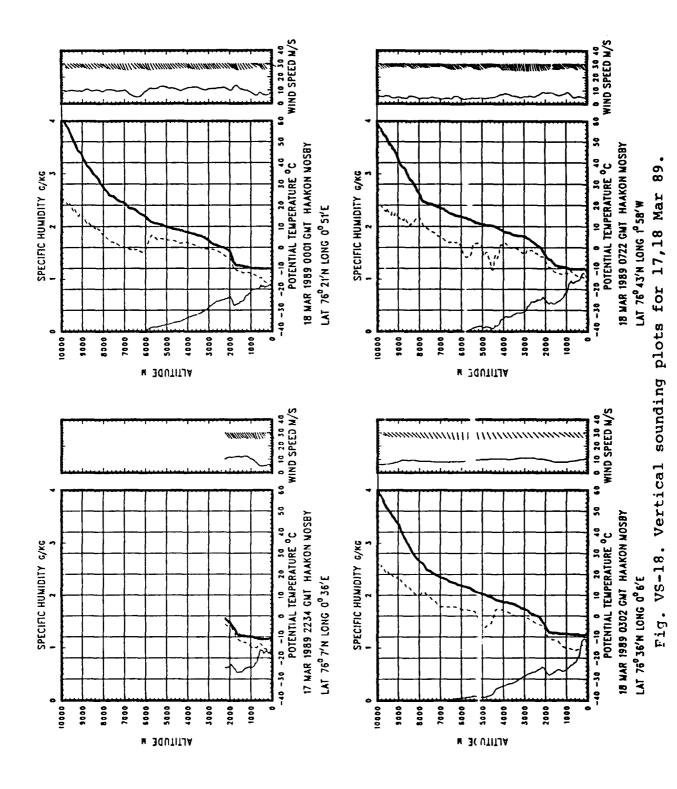




Fig. VS-17. Vertical sounding plots for 17 Mar 89.



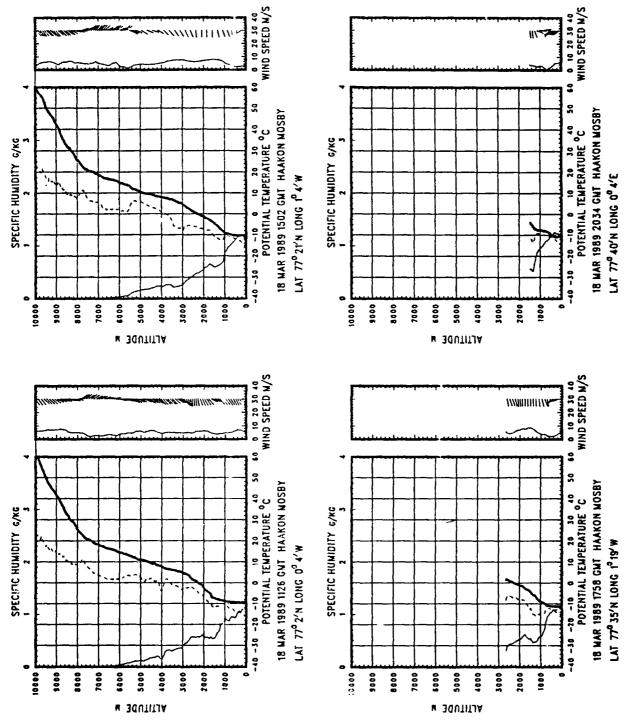
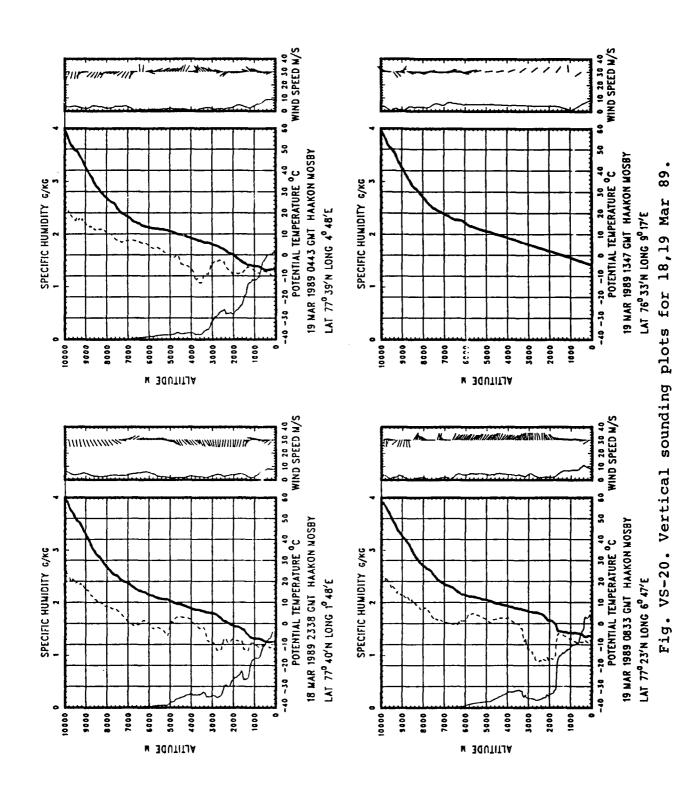




Fig. VS-19. Vertical sounding plots for 18 Mar 89



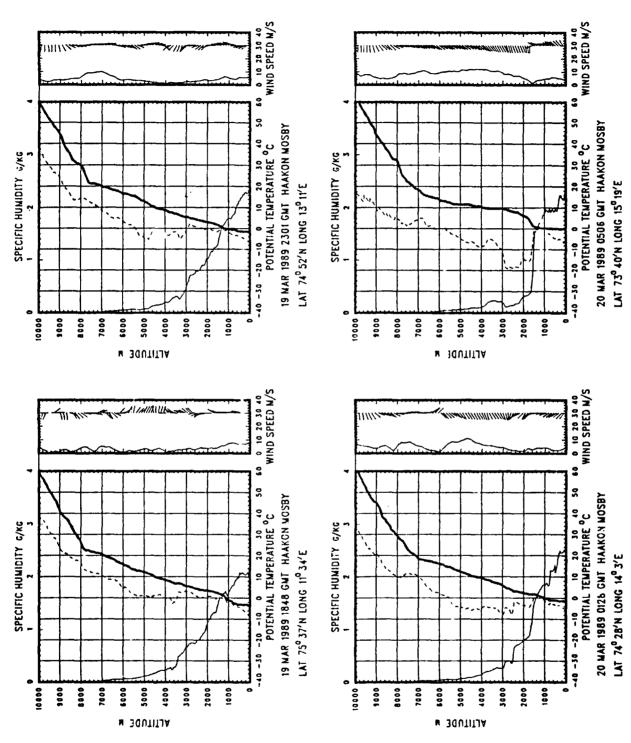



Fig. VS-21. Vertical sounding plots for 19,20 Mar 89.

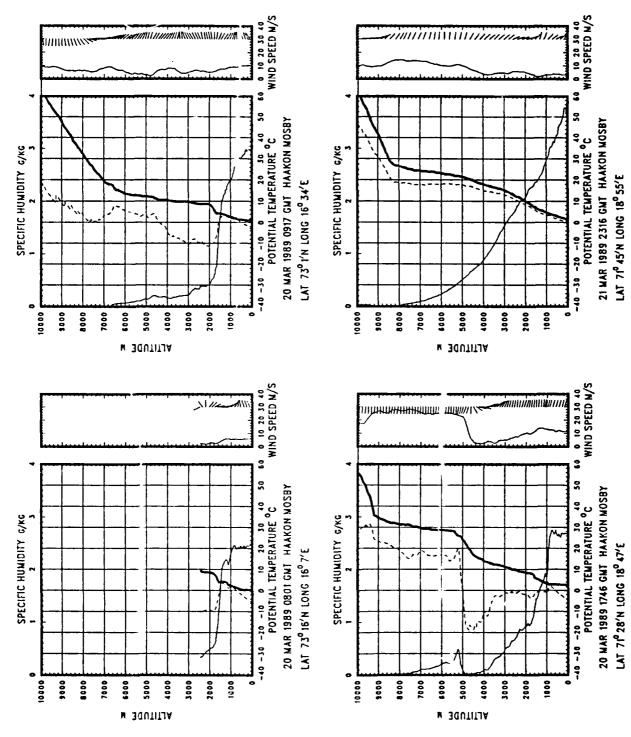



Fig. VS-22. Vertical sounding plots for 20,21 Mar 89,

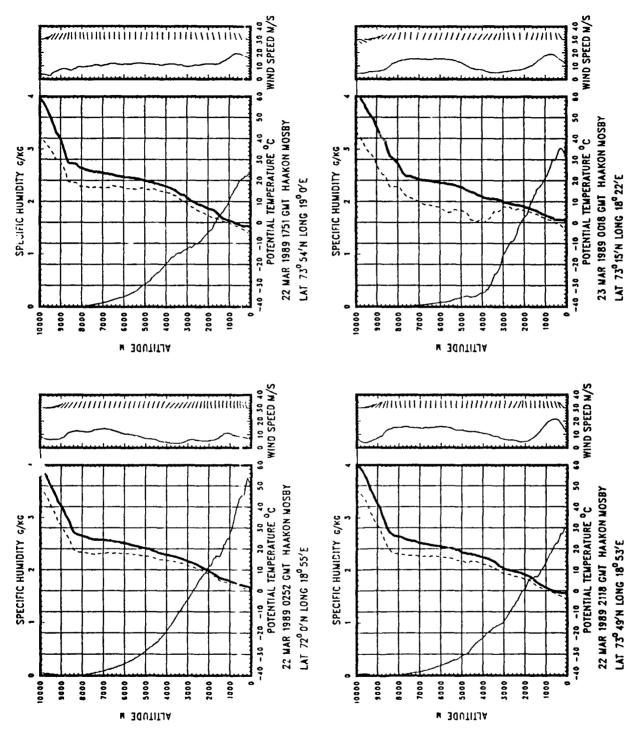



Fig. VS-23. Vertical sounding plots for 22,23 Mar 89.

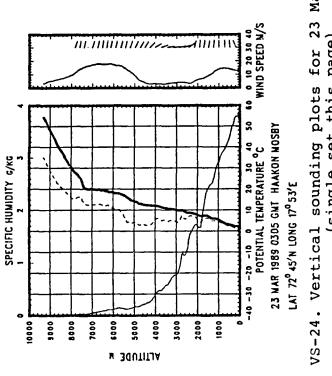



Fig. VS-24. Vertical sounding plots for 23 Mar 89. (single set this page)

## DISTRIBUTION

ASST. SEC. OF THE NAVY

ATTN: SCIENCE OFFICER RSCH. ENG. & SYSTEMS

WASHINGTON, DC 20350-1000

NOARL

ATTN: CODE 125L (10) JCSSC, MS 39529-5004

NOARL

ATTN: CODE 125P

JCSSC, MS 39529-5004

COMMANDER

D.W. TAYLOR NAVAL RSCH. CENTER ATTN: ARCTIC MET. SEC.

ATTN: OPERATIONS OFFICER P.O. BOX 32

BETHESDA, MD 20084-5000

WOODS HOLE, NA 02543

WOODS HOLE (CEANOGRAPHIC INST. SCRIPPS INST. OF OCEANOGROAPHY ATTN: ARCTIC RESEARCH UNIT

BOX 6049

SAN DIEGO, CA 92106

OFFICE OF NAVAL RESEARCH

ATTN: DR. CURTIN, CODE 1125R

800 N. QUINCY ST.

ARLINGTON, VA 22217

NOARL

ATTN: CODE 125 EX

JCSSC, MS 39529-5004

NAVPGSCOL

ATTN: DR. DAVIDSON, CODE MR/DS

DEPT. OF METEOROLOGY

MONTEREY, CA 93943-5000

NAVGPSCOL

DEPT. OF METEOROLOGY

MONTEREY, 93943-5000

OFFICE OF NAVAL TECHNOLOGY

ATTN: DR. R. HANEY, CODE MR/HY ATTN: DR. M. BRISCOE, CODE 228 ATTN: P. PREDERICKSON (MR/Pd)

800 N. QUINCY ST.

ARLINGTON, VA 22217-5000

NAVPGSCOL

DEPT. OF METEOROLOGY

MONTEREY, CA 93943-5000

NAVPGSCOL

ATTN: PETER GUEST, CODE MR/GS ATTN: DR. SILVA, CODE 10D/10P

DEPT. OF METEOROLOGY

MONTEREY, CA 93943-5000

OFFICE OF NAVAL RESEARCH

800 N. QUINCY ST.

ARLINGTON, VA 22217-5000

NAVPGSCOL

ATTN: CODE 0142

MONTEREY, CA 93943-5000

NAVPGSCOL

ATTN: CODE 012

MONTEREY, CA 93943-5000

NATIONAL SCIENCE FOUNDATION ATTN: ARCTIC RESEARCH UNIT

WASHINGTON, DC 20440

PENNSYLVANIA STATE UNIV.

ATTN: APPLIED RSCH. LABORATORY

P.O. BOX 30

STATE COLLEGE, PA 16801

UNIV. OF TEXAS AT AUSTIN ATTN: APPLIED RESEARCH LAB

P.O. BOX 8029

AUSTIN, TX 78713-8029

JOHNS HOPKINS UNIVERSITY ATTN: APPLIED PHYSICS LAB

LAUREL, MD 20707

UNIVERSITY OF WASHINGTON ATTN: APPLIED PHYSICS LAB. 1013 NORTHEAST 40TH ST.

SEATTLE, WA 98105

COMMANDER IN CHIEF U.S. ATLANTIC FLEET

ATTN: FLT METEOROLOGIST

NORFOLK, VA 23511-6001

COMMANDER IN CHIEF U.S. ATLANTIC PLEET

ATTN: NSAP SCIENCE ADVISOR NORFOLK, VA 23511-6001

COMMANDER IN CHIEF U.S. NAVAL FORCES, BUROPE ATTN: METEOROLOGICAL OFFICER

FPO NEW YORK 09510

CINCUSNAVEUR

ATTN: METEORO. OFFICER

BOX N39

FPO NEW YORK 09510-0150

COMSEVENTHELT

ATTN: NSAP SCIENCE ADVISOR

BOX 167

FPO SEATTLE 98762

COMMANDER

U.S. NAVAL FORCES, ICELAND

ATTN: MET. OFFICER

FPO NEW YORK 09571

COMMANDER NAVAL AIR FORCE

U.S. ATLANTIC FLEET ATTN: FLT METEOROLOGIST

NORFOLK, VA 23511-5188

COMNAVSURFLANT

ATTN: NSAP SCIENCE ADVISOR

NORFOLK, VA 23511

SACLANT

ASW RESEARCH CENTER

ATTN: ARCTIC RESEARCH UNIT

APO NEW YORK 09019

ASST. SEC. OF THE NAVY (R&D)

ATTN: ASST. FOR ENV. SCI.

ROOM 5E731, THE PENTAGON

WASHINGTON, DC 20350

OFFICE OF NAVAL RESEARCH

ATTN: CODE 1122AT

ARLINGTON, VA 22217-5000

OFFICE OF NAVAL RESEARCH

ATTN: HEAD, OCEAN SCIENCES DIV

CODE 1122

ARLINGTON, VA 22217-5000

OFFICE OF NAVAL RESEARCH

ATTN: CODE 1122 MM, MARINE MET ATTN: LIBRARY (2C029)

ARLINGTON, VA 22217-5000

NATIONAL SECURITY AGENCY

FT. MEADE, ND 20755

NAVDEP TO THE ADMIN., NOAA ATTN: ARCTIC RESEARCH

ROOM 200, PAGE BLDG. #1

3300 WHITEHAVEN ST. NW WASHINGTON, DC 20235

NAVAL ARCTIC RESEARCH LAB

ATTN: OPS OFFICER

BARROW, AK 99723

NAVPOLAROCEANCEM NAVY DEPT.

ATTN: OPS. OFFICER 4301 SUITLAND RD

WASHINGTON, DC 20395-5180

U.S. NAVOCEANCOMFAC ATTN: OPS. OFFICER

FPO NEW YORK 09571-0926

U.S. NAVAL ACADEMY

ATTN: LIBRARY REPORTS

ANNAPOLIS, MD 21402

U.S. NAVAL ACADEMY ATTN: OCEANOGRAPHY DEPT.

ANNAPOLIS, MD 21402

U.S. NAVAL ACADEMY

ATTN: ARCTIC RESEARCH UNIT

ANNAPOLIS, MD 21402

NAVAL POSTGRADUATE SCHOOL

ATTN: CODE MR

MONTEREY, CA 93943-5000

NAVAL POSTGRADUATE SCHOOL

ATTN: CODE OC

MONTEREY, CA 93943-5000

NAVAL POSTGRADUATE SCHOOL

ATTN: CODE PH

MONTEREY, CA 93943-5000

NAVAL POSTGRADUATE SCHOOL

ATTN: MA

MONTEREY, CA 93943-5000

NAVAL WAR COLLEGE ATTN: GEOPHYS. OFFICER

NAVOPS DEPT.

NEWPORT, RI 02841

SPAWARSYSCOM ATTN: CODE 312

NAT. CTR. #1

WASHINGTON, DC 20363-5100

SPAWARSYSCOM ATTN: CODE PMW-141 NAT. CTR. #1 WASHINGTON, DC 20363-5100

I.W. TAYLOR RESEAFCH CENTER SURFACE SHIP DYNAMICS BRANCH ATTN: S. BALES BETHESDA, MD 20084-5000

U.S. ARMY COLD REGION RESEARCH & ENGINEERING LAB. ATTN: ARCTIC RESEARCH UNIT HANOVER, NH 03755

DIRECTOR, ENV. & LIFE SCI. ATTN: OFFICE OF UNDERSEC.OF DEFENSE FOR RSCH & ENG E&LS RM. 3D129, THE PENTAGON WASHINGTON, DC 20505

CENTRAL INTELLIGENCE AGENCY ATTN: OCR STANDARD DIST. WASHINGTON, DC 20505

DIRECTOR, TECH. INFORMATION ATTN: DEFENSE ADV. RSCH PROJ. 1400 WILSON BLVD. ARLINGTON, VA 22209

COMMANDANT U.S. COAST GUARD ATTN: ARCTIC OPS WASHINGTON, DC 20226

COMMANDING OFFICER USCG RSCH & DEV. CENTER ATTN: ARCTIC OPS GROTON, CT 06340

NOAA ATTN: OCEANOGRAPHIC SERV. DIV. 6010 EXECUTIVE BLVD. ROCKVILLE, MD 20852

FEDERAL COORD. FOR METEORO. ATTN: SERV. & SUP RSCH. 11426 ROCKVILLE SUITE 300 ROCKVILLE, MD 20852

NATIONAL CLIMATIC CENTER ATTN: L. PRESTON D542X2 FEDERAL BLDG. - LIBRARY ASHEVILLE, NC 28801

DIRECTOR NATIONAL OCEANO. DATA CENTER ATTN: E/OC23, NOAA WASHINGTON, DC 20235

ATLANTIC OCEANO. & MET. LABS ATTN: ARCTIC UNIT 15 RICKENBACKER CAUSEWAY VIRGINIA KEY MIAMI, FL 33149

PACIFIC MARINE CENTER NATIONAL OCEAN SURVEY, NOAA ATTN: ARCTIC UNIT 1801 FAIRVIEW AVE., EAST SEATTLE, WA 98102

NATIONAL MARINE FISH. SERV. MARINE FISH & SHELLFISH OCEANO ATTN: ARCTIC UNIT 2725 MONTLAKE BLVD., EAST SEATTLE, WA 98101

WAVE PROPAGATION LAB, NOAA ATTN: CHIEF, SEA STATE STUDIES ATTN: ARCTIC RESEARCH 325 S. BROADWAY BOULDER, CO 80303

NCAR P.O. BOX 3000 BOULDER, CO 80307 NATIONAL SCIENCE FOUNDATION ATTN: HEAD, ATMOS. SCI. DIV. 1800 G STREET, NW WASHINGTON, DC 20550

COLORADO STATE UNIVERSITY ATMOSPHERIC SCIENCES DEPT. ATTN: DR. WILLIAM GRAY FORT COLLINS, CO 80523

ATTN: ATMOSPHERIC SCI. DEPT. 405 HILGARD AVE. LOS ANGELES, CA 90024

CALIFORNIA STATE UNIVERSITY ATTN: METEOROLOGY DEPT. SAN JOSE, CA 95192

COLORADO STATE UNIVERSITY ATTN: ATMOSPHERIC SCI. DEPT. FT. COLLINS, CO 80523

UNIVERSITY OF WASHINGTON ATTN: ATMOSPHERIC SCI. DEPT. SEATTLE, WA 98195

PENNSYLVANIA STATE UNIV. ATTN: METEOROLOGY DEPT.. 503 DEIKE BLDG. UNIVERSITY PARK, PA 16802

FLORIDA STATE UNIVERSITY ATTN: METEOROLOGY DEPT. TALLAHASSEE, FL 32306

IRECTOR COASTAL STUDIES INSTITUTE LOUISIANA STATE UNIVERSITY ATTN: O. HUH BATON ROUGE, LA 70803

OREGON STATE UNIVERSITY ATTN: ATMOS. SCIENCES DEPT. CORVALLIS, OR 97331

UNIVERSITY OF MARYLAND ATTN: METEOROLOGY DEPT. COLLEGE PARK, MD 20742

MASSACHUSETTS INST. OF TECH. ATTN: METEOROLOGY DEPT. CAMBRIDGE, MA 02139

UNIVERSITY OF UTAH ATTN: METEOROLOGY DEPT. SAL LAKE CITY, UT 84112

TEXAS A&M UNIVERSITY ATTN: METEOROLOGY DEPT. COLLEGE STATION, TX 77843 HEW YORK STATE UNIV. ATMOS. SCI. RSCH. CENTER ATTN: ARCTIC UNIT ALBANY, NY 12222

AMERICAN METEORO. SOCIETY ATTN: METEOR. & GEOASTRO. ABS. P.O. BOX 1736 WASHINGTON, DC 20013

WORL METEOROLOGICAL ORG. ATTN: ARCTIC RESEARCH UNIT CASE POSTALE #5, CH-1211 GENEVA, SWITZERLAND

MCGILL UNIVERSITY ATTN: METEOROLOGY DEPT. 805 SHERBROOKE ST., W. MONTREAL, QUEBEC CANADA H3A 2K6

DIRECTOR, METEO. & OCEANO. NATIONAL DEFENSE HDQ. ATTN: ARCTIC RES. SECTION OTTAWA, ONTARIO, KIA OK2 CANADA

DEPT. OF NATIONAL DEFENCE DEFENCE RESEARCH BOARD ATTN: DRT GEOPHYSICS PROGRAM SHIRLEY BAY OTTAWA 13, ONTARIO, CANADA

METOC CENTRE MARITIME FORCES PACIFIC HDQ ATTN: ARCTIC RSCH. SECTION VICTORIA, BRITISH COLUMBIA VOS-180, CANADA

INSTITUT FOR TEORETISK METEORO ATTN: ARCTIC RSCH. SECTION HARALDSGADE 6 DK-2200 KOBEHAVN N DENMARK

INSTITUTE OF PHYS. OCEANO. ATTN: ARCTIC RSCH. SECTION HARALDSGADE 6 2200 COPENHAGEN N. DENMARK

DIR. OF NAVAL OCEANO. & METEOR METEORO. OFFICE LIBRARY ATTN: ARCTIC RSCH. SECTION MINISTRY OF DEFENCE LACON HOUSE, THECBOLD ROAD LONDON WC 1X8RY, ENGLAND

ATTN: ARCTIC RSCH. SECTION BRACKNELL, BERKSHIRE RG 12 1SZ, ENGLAND

UNIVERSITY OF READING ATTN: DEPT. OF METEOROLOGY 2 EARLYGATE, WHITEKNIGHTS READING RG6 2AU **ENGLAND** 

EUROPEAN CENTRE FOR MEDIUM RANGE WEATHER FORECASTS ATTN: ARCTIC RSCH. SECTION SHINFIELD PARK, READING BERKSHIRE RG29AX, ENGLAND

FINNISH METEORO. INST. ATTN: ARCTIC RESEARCH UNIT BOX 503 SF-00101 HEL3INKI 10 FINLAND

SERVICE HYDROGRAPHIQUE ET OCEANOGRAPHIQUE DE LA MARINE ATTN: ARCTIC RSCH. UNIT RUE DU CHATELLIER, B.P. 426 29275 - BREST CEDEX, FRANCE

CENTRE DE RECHERCHE EN METEORO METEOROLOGISCHES INSTITUT DYNAMIQUE (EERM/CRMD) ATTN: DIREC. DE LA METEOROLOGI ATTN: ARCTIC RSCH. UNIT 2 AVENUE RAPP 75007 PARIS, FRANCE

DER UNIVERSITAT BONN 53 BONN, AUF DEM HUGEL 20 FEDERAL REPUBLIC OF GERMANY DIRECTOR, METEOROLOGIE INST. FREIEN UNIVERSITAT BERLIN ATTN: ARCTIC RSCH. UNIT BIBLIOTHEK, PODBIELSKIALLE 62 LORNSENSTRASSE 7, KIEL 1000 BERLIN 33 FEDERAL REPUBLIC OF GERMANY

ICELANDIC MET. OFFICE ATTN: ARCTIC RSCH. UNIT BUSTAOAVEGUR 9 105 REYKJAVIK, ICELAND

NAMSEN REMOTE SENSING CENTER EDVARD GRIEGSVEI 3 A, N-5037 SOLHEIMSVIK, NORWAY

NORTH NORWAY WEATHER CENTRAL ATTN: CHIEF, ARCTIC OPERATIONS P.O. BOX 2760 ELVERHOY, N-9001 TROMSO, NORWAY

**OZEANOGRAPHISCHE** FORSCHUNGSANTALT BUNDESWEHR ATTN: ARCTIC RSCH. UNIT FEDERAL REPUBLIC OF GERMANY

DIRECTOR, SACLANT ASW RESEARCH CENTRE ATTN: OPS OFFICER VIALE SAN BARTOLOMEO, 400 I-19026 LA SPEZIA, ITALY

NORWEGIAN METEOROLOGICAL INST. NORSK POLARINSTITUTT ATTN: CHIEF, ARCTIC OPERATIONS ATTN: DR. TORGNY VINJE P.O. BOX 320 BLINDERN, N-0314 P.O. BOX 158AN 100 OSLO 3, NORWAY

INSTITUT FUR MEERESKUNDE DER UNIVERSITAT HAMBURG ATTN: ARCTIC RSCH UNIT 2000 HAMBURG 13 FEDERAL REPUBLIC OF GERMANY

SWEDISH METEORO. & HYDRO. INST ATTN: ARCTIC UNIT P.O. BOX 923 S-601, 19 NORRKOPING SWEDEN

•

N-1330 OSLO LUFTHAVN NORWAY

## Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of inform...on is "stimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing his burden, to Washington Headquerters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suiter 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Papermork Reduction Project (1704-0188), Washington, DC 2005. 1. Agency Use Only (Leave blank). 3. Report Type and Dates Covered. 2. Report Date. August 1990 Final 4. Title and Subtitle. 5. Funding Numbers. Program Element No. 61153N CEAREX/Haakon Mosby Meteorology Atlas R0007 6. Author(s). 001 Task No. P.A. Frederickson, P.S. Guest, K.L. Davidson Accession No. DN650755 7. Performing Organization Name(s) and Address(es). 8. Performing Organization Report Number. Naval Postgraduate School Department of Meteorology NOARL Technical Note 82 Monterey, CA 93943-5000 9. Sponsoring/Monitoring Agency Name(s) and Address(es). 10. Sponsoring/Monitoring Agency Report Number. Naval Oceanographic and Atmospheric Research Laboratory Atmospheric Directorate Monterey, CA 93943-5006 NOARL Technical Note 82 11. Supplementary Notes. 12a. Distribution/Availability Statement. 12b. Distribution Code. Approved for public release: distribution is unlimited. 13. Abstract (Maximum 200 words). The Coordinated Eastern Arctic Experiment (CEAREX) was conducted in the vicinity of the Svalbard Island group from September 1988 to May 1989. Personnal aboard the R/V Haakon Mosby participated in the Seasonal Ice Zone Experiment (SIZEX) phase of the project, taking continuous surface and upper air measurements during the period 25 Feb-23 Mar 1989. This report describes equipment and methods used in data acquisition and analysis, and summarizes observations by presenting data in three forms: (1) Time series plots of surface pressure, wind speed and direction, air temperature, dew point temperature, and relative humidity; (2) Vertical soundings of potential temperature, potential dew point temperature, specific humidity, and wind speed and direction; and (3) Daily sea level pressure analyses. 14. Subject Terms. 15. Number of Pages. Arctic meteorology 62

NSN 7540-01-280-5500

of Report.

17. Security Classification

UNCLASSIFIED

CEAREX

SIZEX

20. Limitation of Abstract.

Same as report

16. Price Code.

18. Security Classification

UNCLASSIFIED

of This Page.

19. Security Classification

UNCLASSIFIED

of Abstract.